Kompaktes Objekt
Ein kompaktes Objekt (auch endlich präsentiertes Objekt) ist im mathematischen Teilgebiet der Kategorientheorie ein Objekt einer Kategorie, das eine gewisse Endlichkeitsbedingung erfüllt.
Definition
Ein Objekt einer Kategorie , die alle filtrierten Kolimiten enthält heißt kompakt, falls der Funktor
filtrierte Kolimiten erhält, das heißt, falls die kanonische Abbildung
für jedes filtrierte System von Objekten in eine Bijektion ist.[1] Analog heißt kokompakt, falls der Funktor kofiltrierte Limiten erhält.
Literatur
- Jacob Lurie: Higher Topos Theory (= Annals of Mathematics Studies. Band 170). Princeton University Press, 2009, ISBN 978-0-691-14049-0, doi:10.48550/arXiv.math/0608040, arxiv:math/0608040v1 (englisch, ias.edu [PDF]).
Einzelnachweise
- ↑ Lurie: §5.3.4