(482) Petrina

Asteroid
(482) Petrina
{{{Bild}}}
{{{Bildtext}}}
{{{Bild2}}}
{{{Bildtext2}}}
Eigenschaften des Orbits Animation
Epoche: 5. Mai 2025 (JD 2.460.800,5)
Orbittyp Äußerer Hauptgürtel
Asteroidenfamilie
Große Halbachse 3,005 AE
Exzentrizität 0,095
Perihel – Aphel 2,719 AE – 3,291 AE
Perihel – Aphel  AE –  AE
Neigung der Bahnebene 14,448°
Länge des aufsteigenden Knotens 179,2°
Argument der Periapsis 89,3°
Zeitpunkt des Periheldurchgangs 9. November 2022
Siderische Umlaufperiode 5 a 76 d
Siderische Umlaufzeit {{{Umlaufdauer}}}
Mittlere Orbital­geschwin­digkeit {{{Umlaufgeschwindigkeit}}} km/s
Mittlere Orbital­geschwin­digkeit 17,14 km/s
Physikalische Eigenschaften
Mittlerer Durchmesser 45,8 km ± 0,3 km
Abmessungen
Masse Vorlage:Infobox Asteroid/Wartung/Masse kg
Albedo 0,25
Mittlere Dichte g/cm³
Rotationsperiode 11 h 48 min
Absolute Helligkeit 8,9 mag
Spektralklasse {{{Spektralklasse}}}
Spektralklasse
(nach Tholen)
S
Spektralklasse
(nach SMASSII)
Geschichte
Entdecker Max Wolf
Datum der Entdeckung 3. März 1902
Andere Bezeichnung 1902 EH, 1949 HP1, 1956 TK, 1975 FY, 1987 SJ12
Quelle: Wenn nicht einzeln anders angegeben, stammen die Daten vom JPL Small-Body Database. Die Zugehörigkeit zu einer Asteroidenfamilie wird automatisch aus der AstDyS-2 Datenbank ermittelt. Bitte auch den Hinweis zu Asteroidenartikeln beachten.

(482) Petrina ist ein Asteroid des äußeren Hauptgürtels, der am 3. März 1902 vom deutschen Astronomen Max Wolf an der Großherzoglichen Bergsternwarte in Heidelberg bei einer Helligkeit von 12 mag entdeckt wurde.

Der Asteroid ist benannt nach dem Hund Peter des Entdeckers.

Wissenschaftliche Auswertung

Aus Ergebnissen der IRAS Minor Planet Survey (IMPS) wurden 1992 Angaben zu Durchmesser und Albedo für zahlreiche Asteroiden abgeleitet, darunter auch (482) Petrina, für die damals Werte von 46,6 km bzw. 0,24 erhalten wurden.[1] Eine Auswertung von Beobachtungen durch das Projekt NEOWISE im nahen Infrarot führte 2011 zu vorläufigen Werten für den Durchmesser und die Albedo im sichtbaren Bereich von 62,6 km bzw. 0,13.[2] Ein Vergleich von Daten, die von 1978 bis 2011 an der Sternwarte Ondřejov in Tschechien und am Table Mountain Observatory in Kalifornien gesammelt wurden, mit den Daten von NEOWISE ergab 2012 Werte für den Durchmesser und die Albedo von 62,7 km bzw. 0,12.[3] Nachdem die Werte nach neuen Messungen mit NEOWISE 2012 auf 43,3 km bzw. 0,27 geändert worden waren,[4] wurden sie 2014 auf 45,8 km bzw. 0,25 korrigiert.[5]

Photometrische Messungen des Asteroiden fanden erstmals statt vom 1. bis 8. Juli 1981 am Table Mountain Observatory in Kalifornien. Aus den aufgezeichneten Daten konnte nur eine grobe Abschätzung der Rotationsperiode zu 18 ± 5 h erfolgen.[6] Bei neuen Beobachtungen am 22. und 24. März 2006 am Altimira Observatory in Kalifornien konnte dann aus der aufgezeichneten Lichtkurve eine Rotationsperiode von 15,73 h abgeleitet werden.[7] Wieder zu einem völlig anderen Ergebnis führten Messungen vom 21. Juli bis 3. August 2007 am Santana Observatory in Kalifornien, wo die Auswertung der Daten eine Rotationsperiode von 9,434 h ergab.[8]

Bei Asteroiden mit Rotationsperioden von ungefähr einem halb- oder ganzzahligen Erdtag kann an einem Observatorium oft nur eine unvollständige Lichtkurve aufgenommen werden, da in jeder Nacht immer wieder derselbe Teilabschnitt der Lichtkurve erfasst wird. Daher können sehr häufig Fehlinterpretationen geschehen. Im Zeitraum vom 26. Mai bis 26. Juni 2012 wurde daher eine international koordinierte Beobachtungskampagne an drei weit voneinander entfernten Observatorien durchgeführt: Am Organ Mesa Observatory in New Mexico, am Bigmuskie Observatory in Italien und am Kingsgrove Observatory in Australien. Die dabei gewonnene vollständige Lichtkurve konnte jetzt zu einer korrekten Rotationsperiode von 11,794 h ausgewertet werden.[9] Auch eine erneute Messung vom 7. August bis 3. Oktober 2013 während acht Nächten am Organ Mesa Observatory bestätigte dieses Ergebnis mit einem abgeleiteten Wert von 11,7922 h, alle anderen gemeldeten Perioden konnten ausgeschlossen werden.[10]

Die Auswertung von archivierten Lichtkurven der Lowell Photometric Database führte in einer Untersuchung von 2016 erstmals zur Erstellung eines dreidimensionalen Gestaltmodells des Asteroiden für zwei alternative Rotationsachsen mit prograder Rotation und einer Periode von 11,79214 h.[11][12]

Zwischen 2012 und 2018 wurden mit der All-Sky Automated Survey for Supernovae (ASAS-SN) auch photometrische Daten von 20.000 Asteroiden aufgezeichnet. Auf mehr als 5000 davon konnte erfolgreich die Methode der konvexen Inversion angewendet werden, darunter auch (482) Petrina, für die in einer Untersuchung von 2021 ein verbessertes dreidimensionales Gestaltmodell für zwei alternative Rotationsachsen mit prograder Rotation und einer Periode von 11,7921 h berechnet wurde.[13]

Aus archivierten Daten des Asteroid Terrestrial-impact Last Alert System (ATLAS) aus dem Zeitraum 2015 bis 2018 konnte in einer Untersuchung von 2022 mit der Methode der konvexen Inversion eine Rotationsperiode von 11,7923 h bestimmt werden.[14]

Siehe auch

Einzelnachweise

  1. E. F. Tedesco, P. V. Noah, M. Noah, S. D. Price: The Supplemental IRAS Minor Planet Survey. In: The Astronomical Journal. Band 123, Nr. 2, 2002, S. 1056–1085, doi:10.1086/338320 (PDF; 398 kB).
  2. J. R. Masiero, A. K. Mainzer, T. Grav, J. M. Bauer, R. M. Cutri, J. Dailey, P. R. M. Eisenhardt, R. S. McMillan, T. B. Spahr, M. F. Skrutskie, D. Tholen, R. G. Walker, E. L. Wright, E. DeBaun, D. Elsbury, T. Gautier IV, S. Gomillion, A. Wilkins: Main Belt Asteroids with WISE/NEOWISE. I. Preliminary Albedos and Diameters. In: The Astrophysical Journal. Band 741, Nr. 2, 2011, S. 1–20, doi:10.1088/0004-637X/741/2/68 (PDF; 73,0 MB).
  3. P. Pravec, A. W. Harris, P. Kušnirák, A. Galád, K. Hornoch: Absolute magnitudes of asteroids and a revision of asteroid albedo estimates from WISE thermal observations. In: Icarus. Band 221, Nr. 1, 2012, S. 365–387, doi:10.1016/j.icarus.2012.07.026 (PDF; 1,44 MB).
  4. J. R. Masiero, A. K. Mainzer, T. Grav, J. M. Bauer, R. M. Cutri, C. Nugent, M. S. Cabrera: Preliminary Analysis of WISE/NEOWISE 3-Band Cryogenic and Post-cryogenic Observations of Main Belt Asteroids. In: The Astrophysical Journal Letters. Band 759, Nr. 1, L8, 2012, S. 1–8, doi:10.1088/2041-8205/759/1/L8 (PDF; 3,27 MB).
  5. J. R. Masiero, T. Grav, A. K. Mainzer, C. R. Nugent, J. M. Bauer, R. Stevenson, S. Sonnett: Main Belt Asteroids with WISE/NEOWISE. Near-infrared Albedos. In: The Astrophysical Journal. Band 791, Nr. 2, 2014, S. 1–11, doi:10.1088/0004-637X/791/2/121 (PDF; 1,10 MB).
  6. A. W. Harris, J. W. Young, T. Dockweiler, J. Gibson, M. Poutanen, E. Bowell: Asteroid lightcurve observations from 1981. In: Icarus. Band 95, Nr. 1, 1992, S. 115–147, doi:10.1016/0019-1035(92)90195-D.
  7. R. K. Buchheim: Lightcurves of 25 Phocaea, 468 Lina, 482 Petrina, 551 Ortrud, 741 Botolphia, 834 Burnhamia, 2839 Annette, and 3411 Debetencourt. In: The Minor Planet Bulletin. Bulletin of the Minor Planets Section of the Association of Lunar and Planetary Observers, Band 34, Nr. 3, 2007, S. 68–71, bibcode:2007MPBu...34...68B (PDF; 330 kB).
  8. R. D. Stephens: Asteroids Observed from GMARS and Santana Observatories. In: The Minor Planet Bulletin. Bulletin of the Minor Planets Section of the Association of Lunar and Planetary Observers, Band 36, Nr. 2, 2009, S. 59–62, bibcode:2009MPBu...36...59S (PDF; 1,04 MB).
  9. F. Pilcher, A. Ferrero, J. Oey: Rotation Period Determination for 482 Petrina. In: The Minor Planet Bulletin. Bulletin of the Minor Planets Section of the Association of Lunar and Planetary Observers, Band 39, Nr. 4, 2012, S. 228–229, bibcode:2012MPBu...39..228P (PDF; 195 kB).
  10. F. Pilcher: Rotation Period Determinations for 205 Martha and 482 Petrina. In: The Minor Planet Bulletin. Bulletin of the Minor Planets Section of the Association of Lunar and Planetary Observers, Band 41, Nr. 1, 2014, S. 47–49, bibcode:2014MPBu...41...47P (PDF; 271 kB).
  11. J. Hanuš, J. Ďurech, D. A. Oszkiewicz, R. Behrend, B. Carry, M. Delbo, O. Adam, V. Afonina, R. Anquetin, P. Antonini, L. Arnold, M. Audejean, P. Aurard, M. Bachschmidt, B. Baduel, E. Barbotin, P. Barroy, P. Baudouin, L. Berard, N. Berger, L. Bernasconi, J-G. Bosch, S. Bouley, I. Bozhinova, J. Brinsfield, L. Brunetto, G. Canaud, J. Caron, F. Carrier, G. Casalnuovo, S. Casulli, M. Cerda, L. Chalamet, S. Charbonnel, B. Chinaglia, A. Cikota, F. Colas, J.-F. Coliac, A. Collet, J. Coloma, M. Conjat, E. Conseil, R. Costa, R. Crippa, M. Cristofanelli, Y. Damerdji, A. Debackère, A. Decock, Q. Déhais, T. Déléage, S. Delmelle, C. Demeautis, M. Dróżdż, G. Dubos, T. Dulcamara, M. Dumont, R. Durkee, R. Dymock, A. Escalante del Valle, N. Esseiva, R. Esseiva, M. Esteban, T. Fauchez, M. Fauerbach, M. Fauvaud, S. Fauvaud, E. Forné, C. Fournel, D. Fradet, J. Garlitz, O. Gerteis, C. Gillier, M. Gillon, R. Giraud, J.-P. Godard, R. Goncalves, Hiroko Hamanowa, Hiromi Hamanowa, K. Hay, S. Hellmich, S. Heterier, D. Higgins, R. Hirsch, G. Hodosan, M. Hren, A. Hygate, N. Innocent, H. Jacquinot, S. Jawahar, E. Jehin, L. Jerosimic, A. Klotz, W. Koff, P. Korlevic, E. Kosturkiewicz, P. Krafft, Y. Krugly, F. Kugel, O. Labrevoir, J. Lecacheux, M. Lehký, A. Leroy, B. Lesquerbault, M. J. Lopez-Gonzales, M. Lutz, B. Mallecot, J. Manfroid, F. Manzini, A. Marciniak, A. Martin, B. Modave, R. Montaigut, J. Montier, E. Morelle, B. Morton, S. Mottola, R. Naves, J. Nomen, J. Oey, W. Ogłoza, M. Paiella, H. Pallares, A. Peyrot, F. Pilcher, J.-F. Pirenne, P. Piron, M. Polińska, M. Polotto, R. Poncy, J. P. Previt, F. Reignier, D. Renauld, D. Ricci, F. Richard, C. Rinner, V. Risoldi, D. Robilliard, D. Romeuf, G. Rousseau, R. Roy, J. Ruthroff, P. A. Salom, L. Salvador, S. Sanchez, T. Santana-Ros, A. Scholz, G. Séné, B. Skiff, K. Sobkowiak, P. Sogorb, F. Soldán, A. Spiridakis, E. Splanska, S. Sposetti, D. Starkey, R. Stephens, A. Stiepen, R. Stoss, J. Strajnic, J.-P. Teng, G. Tumolo, A. Vagnozzi, B. Vanoutryve, J. M. Vugnon, B. D. Warner, M. Waucomont, O. Wertz, M. Winiarski, M. Wolf: New and updated convex shape models of asteroids based on optical data from a large collaboration network. In: Astronomy & Astrophysics. Band 586, A108, 2016, S. 1–24, doi:10.1051/0004-6361/201527441 (PDF; 493 kB).
  12. J. Ďurech, J. Hanuš, D. Oszkiewicz, R. Vančo: Asteroid models from the Lowell photometric database. In: Astronomy & Astrophysics. Band 587, A48, 2016, S. 1–6, doi:10.1051/0004-6361/201527573 (PDF; 262 kB).
  13. J. Hanuš, O. Pejcha, B. J. Shappee, C. S. Kochanek, K. Z. Stanek, T. W.-S. Holoien: V-band photometry of asteroids from ASAS-SN. Finding asteroids with slow spin. In: Astronomy & Astrophysics. Band 654, A48, 2021, S. 1–11, doi:10.1051/0004-6361/202140759 (PDF; 1,16 MB).
  14. J. Ďurech, M. Vávra, R. Vančo, N. Erasmus: Rotation Periods of Asteroids Determined With Bootstrap Convex Inversion From ATLAS Photometry. In: Frontiers in Astronomy and Space Sciences. Band 9, 2022, S. 1–7, doi:10.3389/fspas.2022.809771 (PDF; 1,01 MB).